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 

Abstract—A novel copy-move forgery detection scheme using 

adaptive over-segmentation and feature point matching is 

proposed in this paper. The proposed scheme integrates both 

block-based and keypoint-based forgery detection methods. First, 

the proposed Adaptive Over-Segmentation algorithm segments 

the host image into non-overlapping and irregular blocks 

adaptively. Then, the feature points are extracted from each block 

as block features, and the block features are matched with one 

another to locate the labeled feature points; this procedure can 

approximately indicate the suspected forgery regions. To detect 

the forgery regions more accurately, we propose the Forgery 

Region Extraction algorithm, which replaces the feature points 

with small superpixels as feature blocks and then merges the 

neighboring blocks that have similar local color features into the 

feature blocks to generate the merged regions; finally, it applies 

the morphological operation to the merged regions to generate the 

detected forgery regions. The experimental results indicate that 

the proposed copy-move forgery detection scheme can achieve 

much better detection results even under various challenging 

conditions compared with the existing state-of-the-art copy-move 

forgery detection methods.  

 
Index Terms—Copy-Move Forgery Detection, Adaptive 

Over-Segmentation, Local Color Feature, Forgery Region 

Extraction 

 

I. INTRODUCTION 

ITH the development of computer technology and image 

processing software, digital image forgery has been 

increasingly easy to perform. However, digital images are a 

popular source of information, and the reliability of digital 

images is thus becoming an important issue. In recent years, 

more and more researchers have begun to focus on the problem 

of digital image tampering. Of the existing types of image 

tampering, a common manipulation of a digital image is 

copy-move forgery [1], which is to paste one or several copied 

region(s) of an image into other part(s) of the same image. 
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During the copy and move operations, some image processing 

methods such as rotation, scaling, blurring, compression, and 

noise addition are occasionally applied to make convincing 

forgeries. Because the copy and move parts are copied from the 

same image, the noise component, color character and other 

important properties are compatible with the remainder of the 

image; some of the forgery detection methods that are based on 

the related image properties are not applicable in this case. In 

previous years, many forgery detection methods have been 

proposed for copy-move forgery detection. According to the 

existing methods, the copy-move forgery detection methods 

can be categorized into two main categories: block-based 

algorithms [1-13] and feature keypoint-based algorithms 

[14-19].  

The existing block-based forgery detection methods divide 

the input images into overlapping and regular image blocks; 

then, the tampered region can be obtained by matching blocks 

of image pixels or transform coefficients. Fridrich et al. [1] 

proposed a forgery detection method in which the input image 

was divided into over-lapping rectangular blocks, from which 

the quantized Discrete Cosine Transform (DCT) coefficients of 

the blocks were matched to find the tampered regions. Popescu 

and Farid [2] applied Principal Component Analysis (PCA) to 

reduce the feature dimensions. Luo et al. [3] used the RGB 

color components and direction information as block features. 

Li et al. [4] used Discrete Wavelet Transform (DWT) and 

Singular Value Decomposition (SVD) to extract the image 

features. Mahdian and Saic [5] calculated the 24 Blur-invariant 

moments as features. Kang and Wei [6] calculated the singular 

values of a reduced-rank approximation in each block. Bayram 

et al. [7] used the Fourier-Mellin Transform (FMT) to obtain 

features. Wang et al. [8, 9] used the mean intensities of circles 

with different radii around the block center to represent the 

block features. Lin et al. [10] used the gray average results of 

each block and its sub-blocks as the block features. Ryu et al. 

[11, 12] used Zernike moments as block features. 

Bravo-Solorio and Nandi [13] used information entropy as 

block features.  

As an alternative to the block-based methods, 

keypoint-based forgery detection methods were proposed, 

where image keypoints are extracted and matched over the 

whole image to resist some image transformations while 

identifying duplicated regions. In [14-16, 18], the 

Scale-Invariant Feature Transform (SIFT) [20] was applied to 

the host images to extract feature points, which were then 

matched to one another. When the value of the shift vector 
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exceeded the threshold, the sets of corresponding SIFT feature 

points were defined as the forgery region. In [17, 19], the 

Speeded Up Robust Features (SURF) [21] were applied to 

extract features instead of SIFT. However, although these 

methods can locate the matched keypoints, most of them cannot 

locate the forgery regions very well; therefore, they cannot 

achieve satisfactory detection results and, at the same time, a 

sustained high recall rate [22]. 

Most of the existing block-based forgery detection 

algorithms use a similar framework, and the only difference is 

that they apply different feature extraction methods to extract 

the block features. Although these algorithms are effective in 

forgery detection, they have three main drawbacks: 1) the host 

image is divided into over-lapping rectangular blocks, which 

would be computationally expensive as the size of the image 

increases; 2) the methods cannot address significant 

geometrical transformations of the forgery regions; and 3) their 

recall rate is low because their blocking method is a regular 

shape. Although the existing keypoint-based forgery detection 

methods can avoid the first two problems, they can reduce the 

computational complexity and can successfully detect the 

forgery, even when some attacks exist in the host images; the 

recall results of the existing keypoint-based forgery methods 

were very poor. 

To address the above-mentioned problems, in this paper, we 

propose a novel copy-move forgery detection scheme using 

adaptive over-segmentation and feature point matching. The 

proposed scheme integrates both the traditional block-based 

forgery detection methods and keypoint-based forgery 

detection methods. Similar to block-based forgery detection 

methods, we propose an image-blocking method called the 

Adaptive Over-Segmentation algorithm to divide the host 

image into non-overlapping and irregular blocks adaptively. 

Then, similar to the keypoint-based forgery detection methods, 

the feature points are extracted from each image block as block 

features instead of being extracted from the whole host image 

as in the traditional keypoint-base methods. Subsequently, the 

block features are matched with one another to locate the 

labeled feature points, which can approximately indicate the 

suspected forgery regions. To detect more accurate forgery 

regions, we proposed the Forgery Region Extraction algorithm, 

which replaces the feature points with small superpixels as 

feature blocks and, then, merges the neighboring blocks with 

similar local color features into feature blocks, to generate the 

merged regions; finally, it applies a morphological operation 

into the merged regions to generate the detected forgery 

regions. 

In the following sections, Section II shows the framework of 

the proposed copy-move forgery detection scheme and then 

explains each step in detail. In section III, a series of 

experiments are conducted to demonstrate the effectiveness of 

our proposed scheme. Finally, the conclusions are drawn in 

section IV. 

 

II. IMAGE FORGERY DETECTION USING ADAPTIVE 

OVER-SEGMENTATION AND FEATURE POINT MATCHING 

This section describes the proposed image forgery detection 

using adaptive over-segmentation and feature point matching in 

detail. Fig. 1 shows the framework of the proposed image 

forgery detection scheme. First, an adaptive over-segmentation 

method is proposed to segment the host image into 

non-overlapping and irregular blocks called Image Blocks (IB). 

Then, we apply the Scale Invariant Feature Transform (SIFT) 

in each block to extract the SIFT feature points as Block 

Features (BF). Subsequently, the block features are matched 

with one another, and the feature points that are successfully 

matched to one another are determined to be Labeled Feature 

Points (LFP), which can approximately indicate the suspected 

forgery regions. Finally, we propose the Forgery Region 

Extraction method to detect the forgery region from the host 

image according to the extracted LFP. In the remainder of this 

section, Section II-A explains the proposed Adaptive 

Over-Segmentation method in detail; Section II-B introduces 

the Feature Point Extraction using SIFT; Section II-C describes 

the Block Feature Matching procedures; and Section II-D 

presents the proposed Forgery Region Extraction method. 

 

 
Fig. 1 Framework of the proposed copy-move forgery detection scheme 

 

A. Adaptive Over-Segmentation Algorithm 

In our copy-move forgery detection scheme, we first propose 

the Adaptive Over-Segmentation algorithm, which is similar to 
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the traditional block-based forgery detection methods and can 

divide the host image into blocks. In previous years, a large 

amount of block-based forgery detection algorithms have been 

proposed [1-13]. Of the existing block-based forgery detection 

schemes, the host image was usually divided into overlapping 

regular blocks, with the block size being defined and fixed 

beforehand, as shown in Fig. 2-(a) and (b). Then, the forgery 

regions were detected by matching those blocks. In this way, 

the detected regions are always composed of regular blocks, 

which cannot represent the accurate forgery region well; as a 

consequence, the recall rate of the block-based methods is 

always very low, for example, as in [8, 9]. Moreover, when the 

size of the host images increases, the matching computation of 

the overlapping blocks will be much more expensive. To 

address these problems, we proposed the Adaptive 

Over-segmentation method, which can segment the host image 

into non-overlapping regions of irregular shape as image 

blocks, as shown in Fig. 2-(c); afterward, the forgery regions 

can be detected by matching those non-overlapping and 

irregular regions. 

 

 
Fig. 2 Different blocking / segmentation methods (a) Overlapping and 

rectangular blocking; (b) Overlapping and circular blocking; and (c) 

Non-overlapping and irregular blocking. 

 

Because we must divide the host image into non-overlapping 

regions of irregular shape and because the superpixels are 

perceptually meaningful atomic regions that can be obtained by 

over-segmentation, we employed the simple linear iterative 

clustering (SLIC) algorithm [23] to segment the host image into 

meaningful irregular superpixels, as individual blocks. The 

SLIC algorithm adapts a k-means clustering approach to 

efficiently generate the superpixels, and it adheres to the 

boundaries very well. Fig. 2 shows the different blocking / 

segmentation methods, where (a) shows the overlapping and 

rectangular blocking, (b) shows the overlapping and circular 

blocking, and (c) shows the non-overlapping and irregular 

blocking with the SLIC segmentation method. Using the SLIC 

segmentation method, the non-overlapping segmentation can 

decrease the computational expenses compared with the 

overlapping blocking; furthermore, in most cases, the irregular 

and meaningful regions can represent the forgery region better 

than the regular blocks. However, the initial size of the 

superpixels in SLIC is difficult to decide.  

In practical applications of copy-move forgery detection, the 

host images and the copy-move regions are of different sizes 

and have different content, and in our forgery detection method, 

different initial sizes of the superpixels can produce different 

forgery detection results; consequently, different host images 

should be blocked into superpixels of different initial sizes, 

which is highly related to the forgery detection results. In 

general, when the initial size of the superpixels is too small, the 

result will be a large computational expense; otherwise, when it 

is too large, the result will be that the forgery detection results 

are not sufficiently accurate. Therefore, a balance between the 

computational expense and the detection accuracy must be 

obtained when employing the SLIC segmentation method for 

image blocking. 

In general, the proper initial size of the superpixels is very 

important to obtain good forgery detection results for different 

types of forgery regions. However, currently, there is no good 

solution to determine the initial size of the superpixels in the 

existing over-segmentation algorithms. In this paper, we 

propose a novel Adaptive Over-Segmentation method that can 

determine the initial size of the superpixels adaptively based on 

the texture of the host image. When the texture of the host 

image is smooth, the initial size of the superpixels can be set to 

be relatively large, which can ensure not only that the 

superpixels can get close to the edges but also that the 

superpixels will contain sufficient feature points to be used for 

forgery detection; furthermore, larger superpixels imply a 

smaller number of blocks, which can reduce the computational 

expense when the blocks are matched with one another. In 

contrast, when the texture of the host image has more detail, 

then the initial size of the superpixels can be set to be relatively 

small, to ensure good forgery detection results. In the proposed 

method, the Discrete Wavelet Transform (DWT) is employed 

to analyze the frequency distribution of the host image. 

Roughly, when the low-frequency energy accounts for the 

majority of the frequency energy, the host image will appear to 

be a smooth image; otherwise, if the low-frequency energy 

accounts for only a minority of the frequency energy, the host 

image appears to be a detailed image. 

We have performed a large number of experiments to seek 

the relationship between the frequency distribution of the host 

images and the initial size of the superpixels to obtain good 

forgery detection results. We performed a four-level DWT, 

using the ‘Haar’ wavelet, on the host image; then, the 

low-frequency energy LFE  and high-frequency energy HFE  

can be calculated using (1) and (2), respectively. With the 

low-frequency energy LFE  and high-frequency energy HFE , 

we can calculate the percentage of the low-frequency 

distribution LFP  using (3), according to which the initial size S 

of the superpixels can be defined as in (4). 
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where S means the initial size of the superpixels; M N  

indicates the size of the host image; and LFP  means the 

percentage of the low-frequency distribution.  

 

     In summary, the flow chart of the proposed Adaptive 

Over-Segmentation method is shown in Fig. 3. First, we 

employed the DWT to the host image to obtain the coefficients 

of the low- and high-frequency sub-bands of the host image. 

Then, we calculated the percentage of the low-frequency 

distribution LFP  using (3), according to which we determined 

the initial size S, using (4). Finally, we employed the SLIC 

segmentation algorithm together with the calculated initial size 

S to segment the host image to obtain the image blocks (IB). 

  

 
Fig. 3 Flowchart of the Adaptive Over-Segmentation algorithm 

 

    Using the Adaptive Over-Segmentation method described 

above, in Fig. 4-(A1), the size of the host image I1 is 

1 1 1632 1224M N   ; according to (3), _1LFP  can be 

calculated, as _1 50.19%LFP  ; therefore, the adaptive initial 

size of the superpixels is calculated using (4), which yields 

_1 199S  . Similarly, for the host image I2 in Fig. 4-(B1), 

with the size 2 2 1306 1950M N   , _ 2 39.89%LFP  , and 

_ 2 159S  ; for the host image I3 in Fig. 4-(C1), with the size 

3 3 1936 1296M N   , _ 2 59.92%LFP  , and _3 224S  . 

Fig. 4-(A4), (B4), and (C4) show the host image segmentations 

with the proposed Adaptive Over-Segmentation method, and 

(a4), (b4), and (c4) show the corresponding detected forgery 

regions with the proposed Adaptive Over-Segmentation 

method. We can see that in Fig. 4-(A), with the calculated 

adaptive size, _1 199S  , the forgery detection result in Fig. 

4-(a4) performs better than the results when the fixed sizes are 

150S   and 250S   (which are given in Fig. 4-(a2) and (a3), 

respectively). In Fig. 4-(B), with the calculated adaptive size 

_ 2 159S  , the forgery detection result in Fig. 4-(b4) is similar 

to the result in Fig. 4-(b2) when 150S  ; in addition, it 

performs better than the results in Fig. 4-(b3) when 250S  . In 

Fig. 4-(C), with the calculated adaptive size, _3 224S  , the 

forgery detection result in Fig. 4-(c4) becomes close to the 

result in Fig. 4-(b3) when 250S  , and it performs better than 

the results in Fig. 4-(b2) when 150S  . 

     As discussed above, the proposed Adaptive 

Over-Segmentation method can divide the host image into 

blocks with adaptive initial sizes according to the given host 

images, with which each image can be determined to be an 

appropriate block initial size to enhance the forgery detection 

results. The proposed Adaptive Over-Segmentation method can 

lead to better forgery detection results compared with the 

forgery detection methods, which segment the host images into 

fixed-size blocks and, at the same time, reduce the 

computational expenses compared with most of the existing 

forgery detection methods, which segment the host images into 

overlapping blocks. 

 

B. Block Feature Extraction Algorithm 

In this section, we extract block features from the image 

blocks (IB). The traditional block-based forgery detection 

methods extracted features of the same length as the block 

features or directly used the pixels of the image block as the 

block features; however, those features mainly reflect the 

content of the image blocks, leaving out the location 

information. In addition, the features are not resistant to various 

image transformations. Therefore, in this paper, we extract 

feature points from each image block as block features, and the 

feature points should be robust to various distortions, such as 

image scaling, rotation, and JPEG compression. 

In recent years, the feature points extraction methods SIFT 

[20] and SURF [21] have been widely used in the field of 

computer vision. The feature points extracted by SIFT and 

SURF were proven to be robust against common image 

processing operations such as rotation, scale, blurring, and 

compression; consequently, SIFT and SURF were often used as 

feature point extraction methods in the existing keypoint-based 

copy-move forgery detection methods. Christlein et al. [22] 

showed that the SIFT possessed more constant and better 

performance compared with the other 13 image feature 

extraction methods in comparative experiments. As a result, in 

our proposed algorithm, we chose SIFT as the feature point 

extraction method to extract the feature points from each image 
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block, and each block is characterized by the SIFT feature 

points that were extracted in the corresponding block. 

Therefore, each block feature contains irregular block region 

information and the extracted SIFT feature points. 

 

 
Fig. 4 Superpixels of different initial sizes and the corresponding forgery detection results (A1), (B1), and (C1). The copy-move host images, I1, I2 and I3; (a1), (b1), 

(c1) The corresponding forgery regions of I1, I2 and I3, respectively. (A2), (B2), (C2) The host images are blocked into superpixels with initial size 150S  ; (a2), 

(b2), (c2) The corresponding detected forgery regions when 150S  . (A3), (B3), (C3) The host images are blocked into superpixels with initial size 250S  ; (a3), 

(b3), (c3) The corresponding detected forgery regions when 250S  . (A4), (B4), (C4) The host images are blocked into superpixels with the proposed Adaptive 
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Over-segmentation method, by which the initial superpixel sizes are calculated as 199S  , 159S  , and 224S  , respectively; (a4), (b4), (c4) The 

corresponding detected forgery regions with the proposed Adaptive Over-segmentation method. 

 

 

C. Block Feature Matching Algorithm 

After we have obtained the block features (BF), we must 

locate the matched blocks through the block features. In most of 

the existing block-based methods, the block matching process 

outputs a specific block pair only if there are many other 

matching pairs in the same mutual position, assuming that they 

have the same shift vector. When the shift vector exceeds a 

user-specified threshold, the matched blocks that contributed to 

that specific shift vector are identified as regions that might 

have been copied and moved. In our algorithm, because the 

block feature is composed of a set of feature points, we 

proposed a different method to locate the matched blocks. Fig. 

5 shows the flowchart of the Block Feature Matching 

algorithm. First, the number of matched feature points is 

calculated, and the correlation coefficient map is generated; 

then, the corresponding block matching threshold is calculated 

adaptively; with the result, the matched block pairs are located; 

and finally, the matched feature points in the matched block 

pairs are extracted and labeled to locate the position of the 

suspected forgery region. The detailed steps are explained as 

follows. 

 

Algorithm: Block Feature Matching algorithm 

Input: Block Features (BF); 

Output: Labeled Feature Points (LFP). 

STEP-1: Load the Block Features  1 2, , , NBF BF BF BF , 

where N means the number of image blocks; and calculate the 

correlation coefficients CC  of the image blocks. 

STEP-2: Calculate the block matching threshold BTR  

according to the distribution of correlation coefficients. 

STEP-3: Locate the matched blocks MB  according to the 

block matching threshold BTR . 

STEP-4: Label the matched feature points in the matched 

blocks MB to indicate the suspected forgery regions. 

 

   In STEP-1, the correlation coefficient CC  of the image 

blocks indicates the number of matched feature points between 

the corresponding two image blocks. Assuming that there are N 

blocks after the adaptive over-segmentation, we can generate 

( 1) / 2N N   correlation coefficients, which form the 

correlation coefficient map. Among the blocks, the two feature 

points are matched when their Euclidean distance is greater 

than the predefined feature points’ matching threshold pTR , 

which means that the feature point ( , )a a af x y  is matched to the 

feature point ( , )b b bf x y  only if they can meet the condition 

defined in (5). 

 

( , ) ( , )a b p a id f f TR d f f                  (5) 

 

where ( , )a bd f f  means the Euclidian distance between the 

feature points af  and bf , as defined in (6); ( , )a id f f  means 

the Euclidian distances between the keypoints af  and all of the 

other keypoints in the corresponding block, as defined in (7), i  

means the thi feature points and n means the number of feature 

points in the corresponding block; in addition, pTR  indicates 

 
Fig. 5 Flowchart of the Block Feature Matching algorithm 

 

the feature points matching threshold. When pTR becomes 

larger, the matching accuracy will be higher, but at the same 

time, the miss probability will be increased. Therefore, in the 

experiments, we set 2pTR   to provide a good trade-off 

between the matching accuracy and miss probability.   

 

2 2( , ) ( ) ( )a b a b a bd f f x x y y                 (6) 

 

2 2( , ) ( ) ( ) , 1,2,... ; ,a i a i a id f f x x y y i n i a i b           (7) 

 

In STEP-2, to calculate the block matching threshold BTR , 

first the different elements of the correlation coefficients are 

sorted in ascending order as 

 1 2 3_ , , , , tCC S CC CC CC CC , where ( 1) / 2t N N  . 

Then, the first derivative and second derivative of _CC S  , 

 _CC S  and  2 _CC S  as well as the mean value of the 

first derivative vector ( _S)CC  are calculated. Finally, we 

select the minimum correlation coefficient from among those 

whose second derivative is larger than the mean value of the 

corresponding first derivative vector, as defined in (8). The 

selected correlation coefficient value is defined as the block 

matching threshold BTR . 
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2( _S) ( _S)CC CC                  (8) 

 

In STEP-3, with the calculated block matching threshold

BTR , if the correlation coefficient of the block pair is larger 

than BTR , the corresponding block pair will be determined to 

be matched blocks; and in STEP-4, the matched feature points 

in the matched blocks are labeled to indicate the suspected 

forgery regions. 

In the proposed Block Feature Matching algorithm, we have 

defined two thresholds to match the blocks: the feature points’ 

matching threshold pTR  and the block matching threshold 

BTR , to avoid possible mismatched features, particularly for 

those copy-move forgery regions that are similar to the image 

background. Among the blocks, the two feature points are 

matched when their Euclidean distance is greater than pTR , 

which can be adjusted to reduce the falsely matched feature 

points. Furthermore, the two blocks are only matched when 

their correlation coefficient is larger than BTR . In summary, in 

the proposed scheme, with these two thresholds, most of the 

false matching can be avoided.     

 

D. Forgery Region Extraction Algorithm 

Although we have extracted the labeled feature points (LFP), 

which are only the locations of the forgery regions, we must 

still locate the forgery regions. Considering that the superpixels 

can segment the host image very well, we proposed a method 

by replacing the LFP with small superpixels to obtain the 

suspected regions (SR), which are combinations of labeled 

small superpixels. Furthermore, to improve the precision and 

recall results, we measure the local color feature of the 

superpixels that are neighbors to the suspected regions (SR); if 

their color feature is similar to that of the suspected regions, 

then we merge the neighbor superpixels into the corresponding 

suspected regions, which generates the merged regions (MR). 

Finally, a close morphological operation is applied to the 

merged regions to generate the detected copy-move forgery 

regions. Fig. 6 shows the flow chart of the Forgery Region 

Extraction algorithm, which is explained in detail as follows. 

 

Algorithm: Forgery Region Extraction 

Input: Labeled Feature Points (LFP) 

Output: Detected Forgery Regions. 

STEP-1: Load the Labeled Feature Points (LFP), apply the 

SLIC algorithm with the initial size S to the host image to 

segment it into small superpixels as feature blocks, and replace 

each labeled feature point with its corresponding feature block, 

thus generating the Suspected Regions (SR). 

STEP-2: Measure the local color feature of the superpixels 

neighbor to the SR, called neighbor blocks; when their color 

feature is similar to that of the suspected regions, we merge the 

neighbor blocks into the corresponding SR, therefore creating 

the merged regions (MR). 

STEP-3: Apply the morphological close operation into MR to 

finally generate the detected forgery regions. 

 

 In STEP-1, assuming that 

 1 1 2 2, , , , , ,n nLPF LP LP LP LP LP LP , where 

,i iLP LP  represents a matched feature point pair, i  means 

the 
thi  labeled feature point pair, 1, 2, ,i n , and n is the 

total number of feature points in LFP; the suspected regions 

will be  1 1 2 2, , , , , ,n nSR LS LS LS LS LS LS . The initial 

size of the SLIC algorithm S, which we used to segment the 

host image into small superpixels, is related to the size of the 

host images; in this paper, for high resolution host images, for 

example, when the size of the host image is approximately 

3000 3000 , the initial size is set to 20S   by experiments; 

while for low-resolution host images, for example, when the 

size of the host image is approximately 1500 1500 , the initial 

size is set to 10S   by the experiments. 

 

 
Fig. 6 Flow chart of the Forgery Region Extraction algorithm 

 

In STEP-2, for each suspected region ,i i iSR LS LS , the 

neighboring blocks are defined as 

_ __ ,i i iSR neighbor LS LS  , where 

 45 ,90 ,135 ,180 ,225 ,270 ,315 ,360         ; then, we 

measure the local color feature of the corresponding suspected 

region 
iSR  and its neighboring blocks _iSR neighbor , using 

(9) and (10) , respectively. 

 
( ) ( ) ( )

_
3

( ) ( ) ( )
_

3

i i i
C i

i i i
C i

R LS G LS B LS
F LS

R LS G LS B LS
F LS

 


 


           (9) 
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_ _ _

_

_ _ _

_

( ) ( ) ( )
_

3

( ) ( ) ( )
_

3

i i i

C i

i i i

C i

R LS G LS B LS
F LS

R LS G LS B LS
F LS

  



  



 


 


         (10) 

 

where ()R , ()G and ()B  mean calculating the RGB 

components of the corresponding block, respectively. When the 

local color feature of the neighboring blocks is similar to that of 

the corresponding suspected regions, which means that the 

local feature can meet the condition defined in (11), the 

neighboring block will be merged into the corresponding 

suspected region. 

 

_

_

_ _

_ _

C i C i sim

C i C i sim

F LS F LS TR

F LS F LS TR





 

 
             (11) 

 

where _C iF LS  and _C iF LS  are the local color features of the 

corresponding suspected region 
iSR , ,i i iSR LS LS ; 

__C iF LS   and __C iF LS   are the local color features of its 

neighboring blocks _iSR neighbor , 

_ __ ,i i iSR neighbor LS LS  . simTR  is the threshold to 

measure the similarity between the local color features; in this 

paper, we set 15simTR   in the experiments. 

Finally, in STEP-3, the structural element that we use in the 

close operation is defined as a circle whose radius is related to 

the size of the host image. The close operation can fill the gaps 

in the merged regions and, at the same time, keep the shape of 

the region unchanged. 

 

III. EXPERIMENTS AND DISCUSSION 

In this section, a series of experiments are conducted to 

evaluate the effectiveness and robustness of the proposed 

image forgery detection scheme using adaptive 

over-segmentation and feature point matching. In the following 

experiments, the image dataset in [22] is used to test the 

proposed method. This dataset is formed based on 48 

high-resolution uncompressed PNG true color images, and the 

average size of the images is 1500 1500 . In the dataset, the 

copied regions are from the categories of living, nature, 

man-made and mixed, and they range from overly smooth to 

highly textured; the copy-move forgeries are created by 

copying, scaling and rotating semantically meaningful image 

regions. In summary, the dataset has 1826 images in total, 

which are realistic copy-move forgeries. Therefore, we chose 

this dataset to objectively evaluate our method. Fig. 7 shows the 

copy-move forgery detection results of the proposed scheme. In 

Fig. 7, (a1), (b1), (c1), (d1) and (e1) display the host images, 

which are forged images that are selected from the dataset; (a2), 

(b2), (c2), (d2) and (e2) show the corresponding forgery 

regions; and (a3), (b3), (c3), (d3) and (e3) show the forgery 

regions that were detected with the proposed scheme. 

In the following experiments, the two characteristics 

precision and recall [16, 22] are used to evaluate the 

performance of the proposed forgery detection scheme. 

Precision is the probability that the detected regions are 

relevant, and it is defined as the ratio of the number of correctly 

detected forged pixels to the number of totally detected forged 

pixels, as stated in (12). Recall is the probability that the 

relevant regions are detected, and it is defined as the ratio of the 

number of correctly detected forged pixels to the number of 

forged pixels in the ground-truth forged image, as stated in 

(13).  

 
'

precision
 




                 (12) 

'

'
recall

 



                  (13) 

 

where   means the detected forgery regions with the proposed 

scheme from the dataset, for example, (a3) ~ (e3) in Fig. 7; and 
'  means the ground-truth forgery regions of the dataset, for 

example, (a2) ~ (e2) in Fig. 7.  

In addition to the precision and recall, we give the 1F  score 

as a reference parameter to measure the forgery detection result; 

the 1F  score combines both the precision and recall into a 

single value, and it can be calculated using (14). 

 

1 2
precison recall

F
precision recall


 


                 (14) 

 

To reduce the effect of the randomness of the samples, the 

average precision and recall are computed over all of the 

images in the dataset. We evaluate the method at the pixel level 

and image level. Though the pixel-level metrics are useful for 

assessing the general localization performance of the algorithm 

when the ground-truth data are available, the image-level 

decisions are especially interesting with respect to the 

automated detection of manipulated images. At the pixel level, 

the precision and recall are calculated by counting the number 

of pixels in the corresponding region. At the image level, the 

precision is the probability that a detected forgery is truly a 

forgery, and the recall is the probability that a forgery image is 

detected. In general, a higher precision and a higher recall 

indicate superior performance. 

    Because Christlein et al. [22] have specifically recommended 

all of the benchmark methods and because we used the same 

dataset that they provided, we can compare our experimental 

results with the copy-move detection evaluation results in their 

paper. We chose several state-of-the-art existing schemes of the 

block-based forgery detection method and the keypoint-based 

forgery detection method to compare with our proposed 

scheme. For example, Bravo [13] and Wang [8, 9] used the 

block-based forgery detection method; and the SIFT and SURF 

feature detection-based forgery detection schemes, which are 

both discussed in [22], are of the keypoint-based forgery 

detection method. Furthermore, to measure the advantage of 
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the proposed Adaptive Over-Segmentation algorithm, we also 

block the host images with a fixed initial size, which we set to 

240S   instead of blocking the host images adaptively; in this 

situation, the detection results are also calculated.  

 In the following sections, first the proposed Adaptive 

Over-Segmentation algorithm is evaluated in Section III-A, and 

then, the proposed copy-move forgery scheme is evaluated 

under different types of tests: the baseline test, for example, and 

the plain copy-move; the geometric transforms, such as scaling 

and rotation; common signal processing, such as JPEG 

compression; and the down-sampling forgeries. Section III-B 

and III-C demonstrate the test results. 

 

 

Fig. 7 The copy-move forgery detection results of the proposed scheme (a1) ~ (e1) The five host images from the dataset; (a2) ~ (e2) The ground-truth forgery 

regions of the corresponding host images; (a3) ~ (e3) The detected forgery regions of the corresponding images, using the proposed forgery detection scheme.

 

A. Evaluation of the Proposed Adaptive Over-Segmentation 

Algorithm 

 As described in Section II-A, the proposed Adaptive 

Over-Segmentation algorithm can divide the host image into 

blocks with an adaptive initial size according to the given host 

images. Compared with other forgery detection methods that 

segment the host images into fixed-size blocks, the forgery 

detection results can be improved with the proposed Adaptive 

Over-Segmentation algorithm. In Fig. 4, three different host 

images are selected to show the forgery detection results when 

the host images are blocked into superpixels of different initial 

sizes. (A1), (B1) and (C1) show the host images I1, I2 and I3, 

respectively; and (a1), (b1) and (c1) show the corresponding 

forgery regions (ground-truth). (A2), (B2) and (C2) show the 

host images being blocked into superpixels with the fixed initial 

size 150S  ; and (a2), (b2) and (c2) show the corresponding 

detected forgery regions. (A3), (B3) and (C3) show the host 

images being blocked into superpixels with the fixed initial size 

250S  ; and (a3), (b3) and (c3) show the corresponding 

detected forgery regions. (A4), (B4) and (C4) show the host 

images being blocked into superpixels with the proposed 

Adaptive Over-segmentation method, and the initial superpixel 

sizes are calculated as 199S  , 159S   and 224S  , 

respectively; and (a4), (b4) and (c4) show the corresponding 

detected forgery regions.  

Table 1 shows the comparison results for the forgery 

detection with and without the proposed Adaptive 

Over-Segmentation algorithm. It can be easily observed that for 

host image I1, the proposed Adaptive Over-segmentation 

method can produce more accurate forgery detection results 

with a higher Precision=93.85% and, at the same time, gain a 

much better Recall=99.12%; for host image I2, the proposed 

Adaptive Over-segmentation method can produce more 

accurate forgery detection results with higher 

Precision=96.60%; and for host image I3, the proposed 
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Adaptive Over-segmentation method can produce more 

accurate forgery detection results with higher Recall=95.19% 

and, at the same time, maintain good Precision=95.28%. The 

comparison results indicate that the proposed Adaptive 

Over-Segmentation algorithm can achieve much better forgery 

detection results than the other forgery detection methods with 

fixed-size blocks. 

 
TABLE 1 FORGERY DETECTION RESULTS WITH / WITHOUT THE PROPOSED 

ADAPTIVE OVER-SEGMENTATION ALGORITHM 

Host Images 
Fixed-size 

 S = 150 

Fixed-size 

 S = 250 

Adaptive-size 

S (I1) = 199 

S (I2) = 159 

S (I3) = 224 

I1 
Precision (%) 91.44 91.91 93.85 

Recall (%) 69.99 69.74 99.12 

I2 
Precision (%) 93.07 93.26 96.60 

Recall (%) 90.75 77.43 78.90 

I3 
Precision (%) 96.90 95.59 95.28 

Recall (%) 81.49 89.46 95.19 

 

B. Detection Results under Plain Copy-Move 

Basically, we first evaluate the proposed scheme under ideal 

conditions; in other words, we have 48 original images and 48 

forgery images, in which a one-to-one copy-move is 

implemented. We must distinguish the original and forgery 

images in this case. Tables 2 and 3 show the detection results 

for the 96 images when under plain copy-move, at the image 

and pixel levels, respectively. From Table 2, it can be easily 

observed that our scheme can achieve precision=96% and 

recall=100%; thus 1 97.96%F   at the image level, which is 

much better than the existing state-of-the-art schemes. In Table 

3, at the pixel level, our scheme can achieve precision=97.22% 

and recall=83.73%; thus 1 89.97%F  , and it can be easily 

observed that our proposed scheme performs much better than 

the keypoint-based forgery detection methods, SIFT [15, 16] 

and SURF [17, 19]. At the same time, it performs similarly to 

the block-based forgery detection methods, i.e., those of Bravo 

[13] and Wang [8, 9]. In addition, we can see that the proposed 

scheme with the adaptive over-segmentation method performs 

better than with fixed-size blocking, at both the image and pixel 

levels. 

In some special cases, it is possible that two copy-move 

regions could be assigned into one single irregular region. and 

hence, it would be impossible to be detected for the two 

subsequent situations that occur together: 1. the two duplicated 

regions are very close to one another or connected; and 2. the 

size of the connected regions is smaller than the Initial Block 

Size S (which is defined in Eq. (4) in the proposed Adaptive 

Over-Segmentation Algorithm). However, the possibility of 

both situations occurring together is quite low and can be 

ignored because this circumstance means that the two 

copy-move forgery regions are extremely small and close. 

According to our experimental results, we have tested a total of 

1824 images in various situations, which are from the Image 

Manipulation Dataset [22], and there are no two regions that are 

assigned into one single region. 

 

TABLE 2 DETECTION RESULTS UNDER PLAIN COPY-MOVE AT IMAGE LEVEL 

Methods 
Precision 

 (%) 

Recall  

(%) 
1F  

 (%) 

Bravo [13] 87.27 100 93.20 

Wang [8, 9] 92.31 100 96.00 

SIFT [15, 16] 88.37 79.17 83.52 

SURF [17, 19] 91.49 89.58 90.53 

Proposed Scheme –  

Fixed Size Blocking  
95.92 97.92 96.91 

Proposed Scheme – 

Adaptively Blocking 
96 100 97.96 

 
TABLE 3 DETECTION RESULTS UNDER PLAIN COPY-MOVE AT THE PIXEL LEVEL 

Methods 
Precision 

 (%) 

Recall  

(%) 
1F   

(%) 

Bravo [13] 98.81 82.98 89.34 

Wang [8, 9] 98.69 85.44 90.92 

SIFT [15, 16] 60.80 71.48 63.10 

SURF [17, 19] 68.13 76.43 69.54 

Proposed Scheme –  

Fixed Size Blocking  
89.87 75.6 82.12 

Proposed Scheme – 

Adaptively Blocking 
97.22 83.73 89.97 

 

C.  Detection Results under Different Transforms 

In addition to the plain copy-move forgery, we have tested 

our proposed scheme when the copied regions are distorted by 

various attacks. In this case, the forged images are generated by 

using each of the 48 images in the dataset, and the copied 

regions are attacked by geometric distortions that include 

scaling and rotation and common signal processing such as 

JPEG compression. 

1) Down-Sampling: All 48 of the forged host images in the 

dataset are scaled down from 90% to 10% in steps of 

20%. In this case, we must test a total of 48 5 240   

images. 

2) Scaling: The copied regions are scaled with the scale 

factor varying from 91% to 109%, in steps of 2%, and 

with the scale factor of 50%, 80%, 120% and 200% as 

well. In this case, we must test a total of 48 14 672   

images. 

3) Rotation: The copied regions are rotated with the 

rotation angle varying from 2º to 10º, in steps of 2º, and 

with the rotation angles of 20º, 60º and 180º as well. In 

this case, we must test a total of 48 8 384   images. 

4) JPEG compression: The forgery images are JPEG 

compressed with the quality factor varying from 100 to 

20, in steps of -10. In this case, we must test a total of 

48 9 432   images. 
 

 

 Figs. 8, 9, and 10 show the detection results at the pixel level 

when under different attacks: (a) Down-sampling, (b) Scaling, 

(c) Rotation, and (d) JPEG Compression. Here, the results that 

are represented in blue and marked ‘Proposed’ indicate the 

results of the Proposed Scheme With Adaptive Blocking. The 

results that are represented in yellow and marked ‘RSIFT’ 



1556-6013 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIFS.2015.2423261, IEEE Transactions on Information Forensics and Security

 

 

 

11 

indicate the results of the Proposed Scheme with Fixed Size 

Blocking. The results that are represented in green and red and 

marked as ‘SIFT’ and ‘SURF’ indicate the results of the 

keypoint-based forgery detection methods based on SIFT [15, 

16] and SURF [17, 19], respectively; and the results that are 

represented in pink and sky-blue and marked as ‘Bravo’ and 

‘Circle’ indicate the results of the block-based forgery 

detection methods proposed by Bravo and Nandi [13] and by 

Wang et al. [8, 9], respectively. 
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Fig. 8 Precision results at the pixel level (a) Down-sampling; (b) Scaling; (c) 

Rotation; and (d) JPEG Compression. 
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Fig. 9 Recall results at the pixel level (a) Down-sampling; (b) Scale; (c) 

Rotation; and (d) JPEG Compression. 
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Fig. 10 1F  scores at the pixel level (a) Down-sampling; (b) Scale; (c) Rotation; 

and (d) JPEG Compression. 

 

In Fig. 8 ~ 10, the x-axis in (a) represents the factor of 

down-sampling, (b) represents the scale factor, (c) represents 

the rotation angle, and (d) represents the quality factor. Fig. 8 

shows the precision results of the proposed scheme compared 

with the existing methods; it can be easily observed that the 

precision of the proposed scheme exceeds that of the existing 

keypoint-based methods, SIFT [15, 16] and SURF [17, 19], by 

a large amount and is as good as that of the existing block-based 

methods (the schemes proposed by Bravo and Nandi [13] and 

by Wang et al. [8, 9]) under various attacks, including 

geometric distortions and common signal processing. 

Moreover, according to the precision results, the proposed 

scheme with the adaptive over-segmentation method performs 

better than that with the fixed-size blocking. 

At the same time, Fig. 9 shows the recall results of the 

proposed scheme compared with the existing methods. It can be 

easily observed that the recall of the proposed scheme is much 

better than that of the existing methods when under various 

attacks; this finding is expected because in our scheme, we 

proposed the Forgery Region Extraction algorithm to locate the 

forgery regions, which replace the feature points with small 

superpixels as feature blocks and then merge the neighboring 

blocks with similar local color features into the feature blocks. 

The Forgery Region Extraction algorithm can help greatly 

reduce the possibility of the forgery being undetected and can 

thus improve the recall by a large amount. 

Fig. 10 shows the 1F  scores, which combine both the 

precision and recall into a single value, for the proposed 

scheme compared with the existing methods. This figure 

indicates that the forgery detection result of the proposed 

scheme is better than that of the existing state-of-the-art 

methods when under the various attacks.  

Although our rotation experiments only involve rotation with 

very small angles, our proposed method can work well against 



1556-6013 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIFS.2015.2423261, IEEE Transactions on Information Forensics and Security

 

 

 

12 

any rotation angle because our block features are extracted by 

the SIFT algorithm, which is well known for its robustness to 

scale and rotation invariance. We have also conducted the 

experiments for copy-move forgery regions with large rotation 

angles: the results turn out to be similar and are very good. 

 

IV. CONCLUSIONS 

Digital forgery images created with copy-move operations 

are challenging to detect. In this paper, we have proposed a 

novel copy-move forgery detection scheme using adaptive 

over-segmentation and feature-point matching. The Adaptive 

Over-Segmentation algorithm is proposed to segment the host 

image into non-overlapping and irregular blocks adaptively 

according to the given host images; using this approach, for 

each image, we can determine an appropriate block initial size 

to enhance the accuracy of the forgery detection results and, at 

the same time, reduce the computational expenses. Then, in 

each block, the feature points are extracted as block features, 

and the Block Feature Matching algorithm is proposed, with 

which the block features are matched with one another to locate 

the labeled feature points; this procedure can approximately 

indicate the suspected forgery regions. Subsequently, to detect 

the more accurate forgery regions, we propose the Forgery 

Region Extraction algorithm, in which the labeled feature 

points are replaced with small superpixels as feature blocks, 

and the neighboring feature blocks with local color features that 

are similar to the feature blocks are merged to generate the 

merged regions. Next, the morphological operation is applied 

to the merged regions to generate the detected forgery regions.  

We demonstrate the effectiveness of the proposed scheme 

with a large number of experiments. Experimental results show 

that the proposed scheme can achieve much better detection 

results for copy-move forgery images under various 

challenging conditions, such as geometric transforms, JPEG 

compression, and down-sampling, compared with the existing 

state-of-the-art copy-move forgery detection schemes. Future 

work could focus on applying the proposed forgery detection 

scheme based on adaptive over-segmentation and feature-point 

matching on other types of forgery, such as splicing or other 

types of media, for example, video and audio. 

 

ACKNOWLEDGMENT 

The authors would like to thank the reviewers for their 

valuable comments.  

REFERENCES 

[1] A. J. Fridrich, B. D. Soukal, and A. J. Lukáš, "Detection of 

copy-move forgery in digital images," in in Proceedings of Digital 

Forensic Research Workshop, 2003. 

[2] A. C. Popescu and H. Farid, "Exposing digital forgeries by detecting 

duplicated image regions," Dept. Comput. Sci., Dartmouth College, 

Tech. Rep. TR2004-515, 2004. 

[3] W. Luo, J. Huang, and G. Qiu, "Robust detection of 

region-duplication forgery in digital image," in Pattern 

Recognition, 2006. ICPR 2006. 18th International Conference on, 

2006, pp. 746-749. 

[4] G. Li, Q. Wu, D. Tu, and S. Sun, "A sorted neighborhood approach 

for detecting duplicated regions in image forgeries based on DWT 

and SVD," in Multimedia and Expo, 2007 IEEE International 

Conference on, 2007, pp. 1750-1753. 

[5] B. Mahdian and S. Saic, "Detection of copy–move forgery using a 

method based on blur moment invariants," Forensic science 

international, vol. 171, pp. 180-189, 2007. 

[6] X. Kang and S. Wei, "Identifying tampered regions using singular 

value decomposition in digital image forensics," in Computer 

Science and Software Engineering, 2008 International Conference 

on, 2008, pp. 926-930. 

[7] S. Bayram, H. T. Sencar, and N. Memon, "An efficient and robust 

method for detecting copy-move forgery," in Acoustics, Speech and 

Signal Processing, 2009. ICASSP 2009. IEEE International 

Conference on, 2009, pp. 1053-1056. 

[8] J. Wang, G. Liu, H. Li, Y. Dai, and Z. Wang, "Detection of image 

region duplication forgery using model with circle block," in 

Multimedia Information Networking and Security, 2009. MINES'09. 

International Conference on, 2009, pp. 25-29. 

[9] J. Wang, G. Liu, Z. Zhang, Y. Dai, and Z. Wang, "Fast and robust 

forensics for image region-duplication forgery," Acta Automatica 

Sinica, vol. 35, pp. 1488-1495, 2009. 

[10] H. Lin, C. Wang, and Y. Kao, "Fast copy-move forgery detection," 

WSEAS Transactions on Signal Processing, vol. 5, pp. 188-197, 

2009. 

[11] S. Ryu, M. Lee, and H. Lee, "Detection of copy-rotate-move forgery 

using Zernike moments," in Information Hiding, 2010, pp. 51-65. 

[12] S. J. Ryu, M. Kirchner, M. J. Lee, and H. K. Lee, "Rotation Invariant 

Localization of Duplicated Image Regions Based on Zernike 

Moments," Ieee Transactions on Information Forensics and 

Security, vol. 8, pp. 1355-1370, Aug 2013. 

[13] S. Bravo-Solorio and A. K. Nandi, "Exposing duplicated regions 

affected by reflection, rotation and scaling," in Acoustics, Speech 

and Signal Processing (ICASSP), 2011 IEEE International 

Conference on, 2011, pp. 1880-1883. 

[14] H. Huang, W. Guo, and Y. Zhang, "Detection of copy-move forgery 

in digital images using SIFT algorithm," in Computational 

Intelligence and Industrial Application, 2008. PACIIA'08. 

Pacific-Asia Workshop on, 2008, pp. 272-276. 

[15] X. Y. Pan and S. Lyu, "Region Duplication Detection Using Image 

Feature Matching," Ieee Transactions on Information Forensics and 

Security, vol. 5, pp. 857-867, Dec 2010. 

[16] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra, "A 

sift-based forensic method for copy–move attack detection and 

transformation recovery," Information Forensics and Security, 

IEEE Transactions on, vol. 6, pp. 1099-1110, 2011. 

[17] X. Bo, W. Junwen, L. Guangjie, and D. Yuewei, "Image copy-move 

forgery detection based on SURF," in Multimedia Information 

Networking and Security (MINES), 2010 International Conference 

on, 2010, pp. 889-892. 

[18] P. Kakar and N. Sudha, "Exposing Postprocessed Copy–Paste 

Forgeries Through Transform-Invariant Features," Information 

Forensics and Security, IEEE Transactions on, vol. 7, pp. 

1018-1028, 2012. 

[19] B. Shivakumar and L. D. S. S. Baboo, "Detection of region 

duplication forgery in digital images using SURF," IJCSI 

International Journal of Computer Science Issues, vol. 8, 2011. 

[20] D. G. Lowe, "Object recognition from local scale-invariant 

features," in Computer vision, 1999. The proceedings of the seventh 

IEEE international conference on, 1999, pp. 1150-1157. 

[21] H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded up robust 

features," in Computer Vision–ECCV 2006, ed: Springer, 2006, pp. 

404-417. 

[22] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou, 

"An Evaluation of Popular Copy-Move Forgery Detection 

Approaches," Ieee Transactions on Information Forensics and 

Security, vol. 7, pp. 1841-1854, Dec 2012 

[23] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, 

"SLIC superpixels compared to state-of-the-art superpixel 

methods," IEEE Trans Pattern Anal Mach Intell, vol. 34, pp. 

2274-82, Nov 2012. 


